PRO CDH-DESCENT FOR CYCLIC HOMOLOGY AND -THEORY
نویسندگان
چکیده
منابع مشابه
Pro cdh-descent for cyclic homology and K-theory
In this paper we prove that cyclic homology, topological cyclic homology, and algebraic K-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of K-theory with compact support.
متن کاملTORIC VARIETIES, MONOID SCHEMES AND cdh DESCENT
We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties and schemes, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop many notions for monoid schemes based on classical algebraic geometry, such as separ...
متن کاملDetecting K-theory by Cyclic Homology
We discuss which part of the rationalized algebraic K-theory of a group ring is detected via trace maps to Hochschild homology, cyclic homology, periodic cyclic or negative cyclic homology.
متن کاملCyclic homology and equivariant homology
The purpose of this paper is to explore the relationship between the cyclic homology and cohomology theories of Connes [9-11], see also Loday and Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is the circle group. The most general results involve the definitions of the cyclic homology of cyclic chain complexes and the notions of cyclic and cocyclic spaces so precis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu
سال: 2014
ISSN: 1474-7480,1475-3030
DOI: 10.1017/s1474748014000413